Regular Inference as Vertex Coloring
نویسندگان
چکیده
This paper is concerned with the problem of supervised learning of deterministic finite state automata, in the technical sense of identification in the limit from complete data, by finding a minimal DFA consistent with the data (regular inference). We solve this problem by translating it in its entirety to a vertex coloring problem. Essentially, such a problem consists of two types of constraints that restrict the hypothesis space: inequality and equality constraints. Inequality constraints translate to the vertex coloring problem in a very natural way. Equality constraints however greatly complicate the translation to vertex coloring. In previous coloring-based translations, these were therefore encoded either dynamically by modifying the vertex coloring instance on-the-fly, or by encoding them as satisfiability problems. We provide the first translation that encodes both types of constraints together in a pure vertex coloring instance. This offers many opportunities for applying insights from combinatorial optimization and graph theory to regular inference. We immediately obtain new complexity bounds, as well as a family of new learning algorithms which can be used to obtain both exact hypotheses, as well as fast approximations.
منابع مشابه
Just chromatic exellence in fuzzy graphs
A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملOn coupon colorings of graphs
Let G be a graph with no isolated vertices. A k-coupon coloring of G is an assignment of colors from [k] := {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of G contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon coloring number of G, and is denoted χc(G). In this paper, we prove that every d-regular...
متن کاملOn the b-chromatic number of regular bounded graphs
A b-coloring of a graph is a proper coloring such that every color class contains a vertex adjacent to at least one vertex in each of the other color classes. The b-chromatic number of a graph G, denoted by b(G), is the maximum integer k such that G admits a b-coloring with k colors. El Sahili and Kouider conjectured that b(G) = d + 1 for d-regular graph with girth 5, d ≥ 4. In this paper, we p...
متن کاملA practical algorithm for [r, s, t]-coloring of graph
Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...
متن کامل